	540	Nat	ional 5 (Chemistry		-	u	Tra	ffic Li	ight
	JAB chem			ical Formula	0	JAB chem	Lesson	Red	Amber	Green
T							_ T		A	9
	Ending	Meaning	ine names of	f the elements from v Example to the first second	which they ar ample	e formed.				
37		ts in compound	C	opper sulphide = cop	-	r		$\overline{\mathbf{S}}$	\odot	\odot
57		•		opper sulphate = cop						
	-ite 2 elemen	ts in compound +	+ oxygen So	odium sulphite = sod	lium + sulphu	ır + oxygen				
	Chemical formulae	can be written fo	r two eleme	nt compounds using	valency rules	s and a				
	Periodic Table.									
	I he valency of	an element is worke Group Number		group number: 3 4 5 6 7	0					
		Valency		3 4 3 2 1	0					
	The formula of Write down		compound is w 1 Valency below	vorked out by the cross-o Put in		and cancel down if	1			
38	element symb		nent's symbol	Cross-over Arrows		to get formula		\odot	\odot	\odot
	Si C) Si	0	Si O	Si	$_{2}O_{4}$				
			U							
			2			+				
		4	Z	4 Z	Si	0_2				
	Roman numerals in	the name of a co	mpound ind	licate the valency of a		4	<u> </u>			
		Roman Numeral		III IV V V				$\overline{\mathbf{S}}$	\odot	0
39	Valency 1 2 3 4 5 6 7								☺	\odot
				the metal has been work		roman numeral				
	Compound	carbon mono xide	carbon di oxi	om names with prefix ide sulphur tri oxide	xes. carbon tetra ch	nloride				
40	Formula	CO	CO ₂	SO ₃	CCl ₄			$\overline{\mbox{\sc o}}$	\odot	\odot
	Meaning	Mono = 1	Di = 2	Tri = 3	Tetra = 4	ŀ				
			nolecular su	bstance gives the nu	mber of each	type of atom				
41	present in a molecu							$\overline{\mathfrak{S}}$	\odot	\odot
	 The formula substance. 	of a covalent net	work gives	the simplest ratio of	each type of	atom in the				
42		e than one type	of atom are	often referred to as g	roun ions			$\overline{\mbox{\ensuremath{\otimes}}}$	\odot	\odot
	-			s containing group io			+	0		•
				d out from the charge						
	Write down	Write down	n Valency below nent's symbol	Put in	Follow arrows	and cancel down if]			
	element symb	_	5	Cross-over Arrows	-	to get formula				
43	Al SO	$4^{2^{-}}$ Al	SO_4^{2-}	Al SO ₄ ²⁻				\otimes	\odot	\odot
					Al_2	$SO_4)_3$				
		3	Z	<u> </u>						
Ionic formulae give the simplest ratio of each type of ion in the substance and can show the										
 charges on each ion, if required. charges must be superscript and numbers of atoms/ions must be subscript 										
44	Charges mus Work out the formula of				on in brackets if th		1	$\overline{\mbox{\ensuremath{\otimes}}}$	\odot	\odot
45	substance	formed by the m			of that ion to get io		-			
$Al_2(SO_4)_3$ Al^{3+} SO_4^{2-} $(Al^{3+})_2(SO_4^{2-})_3$										

	National 5 Chamictry							
B	JABNational 5 ChemistryJABchemUnit 1.3b Mole Calculations & Balanced Equationschem		Lesson	Red	Amber	Green		
46	$\begin{array}{c c} \hline \text{Chemical equations, using formulae and state symbols, can be written and balanced.} \\ \hline \text{Write down correct chemical formula of all reactants before the arrow and all products after the arrow.} \\ \hline Na(s) + O_2(g) & Na_2O(s) \\ \hline \text{There are 2 oxygen atoms on left hand side but only 1 oxygen atom on right hand side. As the formula of Na_2O cannot be changed, double the number of Na_2O molecules by adding the number 2 in front of the formula \\ \hline Na(s) + O_2(g) & 2Na_2O(s) \\ \hline \text{There is 1 sodium atom on the LHS but 4 sodium atoms on the RHS. As the formulae of Na and Na_2O are set and cannot be changed, we must add the number 4 in front of the Na on the LHS to balance the number of Na atoms \\ \hline 4Na(s) + O_2(g) & 2Na_2O(s) \\ \hline \end{array}$			8		0		
47	The mass of a mole of any substance, in grams, is equal to the gram formula mass and can be calculated using relative atomic masses. e.g. calculate the gfm of glucose $C_6H_{12}O_6$.WriteNumber of eachRelativeElementatom fromAtomic MassSymbolformula(p7 data book)TotalC6x12=72H12x1=12O6x16=96gfm=180180100			8	٢	0		
48a	Calculations can be performed using the relationship between the mass and the number of moles of a substance. $m = mass$ $n = no. of moles$ $GFM = gram formula mass$ $m = n \times gfm$ $n = \frac{m}{gfm}$ $gfm = \frac{m}{n}$			☺		٢		
48b	Changing number of moles \longrightarrow number of grams e.g. Calculate the number of moles in 3.6g of water. Calculate the gfm of H ₂ O H 2 x 1 = 2 O 1 x 16 = 16 gfm = 18g then = $\frac{3.6}{18}$ = 0.2mol			$\overline{\otimes}$		٢		
48c	$\begin{array}{c} \text{Changing number of grams} \longrightarrow \text{number of moles} \\ \text{e.g. calculate the mass if 0.1 moles of CO}_2 \\ \text{Calculate the gfm of CO}_2 \\ \text{C} & 1 & x & 12 & = & 12 \\ \text{O} & 2 & x & 16 & = & 32 \\ \text{gfm} & = & 44g \end{array} \qquad \begin{array}{c} \text{mass = no. of mol x gfm} \\ \text{= } & 0.1 \text{ x } 44 \\ \text{= } & 44g \end{array}$			8		٢		
49	A solution is formed when a solute is dissolved in a solvent. Name Definition solution a mixture formed when a solute dissolves in a solvent solute The substance that is dissolved solvent The liquid that does the dissolving			$\overline{\mbox{\scriptsize (s)}}$:		
50	The number of moles of solute, volume of solution and concentration of solution can calculated using the equation: $n = C \times V$ $no. of moles = Concentration \times volume$ (mol) (litres) $n = V \times C$ $C = \frac{mol}{V}$ $V = \frac{mol}{C}$	be		$\overline{\mathbf{S}}$:	3		

	the mass or number of moles of a e.g. calculate the mass of carbon dioxide gfm CaCO ₃ Ca 1 x 40 = C 1 x 12 = O 3 x 16 = gfm = $n = \frac{m}{gfm} = \frac{5}{100} = 0.05 \text{mol}$ CaC In	nother substance in the produced if 5g of calcium ca gfm CO ₂ 40 12 46 100g	rbonate reacts with	Ø	٩	٢
52	The percentage composition of a formula of the compound. Calculate mass of 1 mole $Fe_2O_3 = (2x56) + (3x16)$ = 112 + 48 = 160g	Find mass of element 2 x Fe = (2x56)	bund can be calculated from the Percentage Fe in Fe ₂ O ₃ calculation $\frac{112g}{160g} \times 100 = 70\%$	8	:	٢

Na						-		estio				3	AB	che	M
Traffic	: Lights			Unit	1.3	a Cl	hemi	cal f	Form	nula	2	•			
Outcome	<u>Original</u> Specimen	<u>New</u> Specimen	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>	<u>Nat5</u>							
	Paper	Paper	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>								
37		L6e						L8b							
38			L11c					L8c							
39					mc7		L15c								
40							L5c								
41															
42															
43															
44 45	L5a	mc23 L3a	mc3 L3d	mc6 L6b		mc3		L11a							
46	L4a(i)	L5a(i)	mc4	mc8 L14a(i)	mc1 L5c(i) L6b	mc7	L10a(i)								
47							L13a(ii)	L2d							
48a			L3b	mc9		mc8									
48b	L13a	L15a		L7b		L2c									
48c															
49								mc9							
50	L13b	L15b		L7b	L12d	mc9	mc7 L14b(iii)	L12a(ii)							
51	L4b(i)	L5b(i)	L10b		L3c(ii)	L12c	L16c	L5c(i) L12b(iv)							
52	L11a	L12a	L12b		L4b	L10b		mc10							
Marking Scheme	Back of Paper	Back of Paper	<u>SQA Nat5</u> 2014 Msch	<u>SQA Nat5</u> 2015 Msch	<u>SQA Nat5</u> 2016 Msch	<u>SQA Nat5</u> 2017 Msch	<u>SQA Nat5</u> 2018 Msch	<u>SQA Nat5</u> 2019 Msch							

Nat5	Answer	% Correct	Reasoning								
2014 3	A	51	hosphate PO_4^{3-} is listed in data booklet page 8 Total negative charge in $Zn_3(PO_4)_2$ formula is 6- as there are two phosphate ions Il ionic compounds are neutral over all so the total positive charge must be 6+ Total positive charge in the 3 zinc ions = 6+ Positive charge on each zinc ion = ${}^{6+}/_3$ = 2+								
			Fe_2O_3 + CO \rightarrow Fe + CO_2								
			Fe: $2xFe$ before arrow but $1xFe$ after arrow \therefore double Fe after arrow Fe_2O_3 + CO \rightarrow $2Fe$ + CO_2								
2014		00	O: 4xO before arrow but 2xO after arrow \therefore double CO ₂ after arrow Fe ₂ O ₃ + CO \rightarrow 2Fe + 2CO ₂								
4	С	89	C: 1xC before arrow but 2xC after arrow \therefore double CO before arrow Fe ₂ O ₃ + 2CO \rightarrow 2Fe + 2CO ₂								
			O: 5xO before arrow but 4xO after arrow : increase CO to 3 before arrow Fe_2O_3 + $3CO \rightarrow 2Fe$ + $2CO_2$								
			C: 3xC before arrow but 2xFe after arrow : increase CO ₂ to 3 after arrow $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$								
2015 6	С	51	Chromium chloride has the formula Chloride ions have the formula 3 chloride ions per chromium chloride Chromium ion must have 3+ charge to balance charge CrCl3 Cl ⁻ Cr ⁿ⁺ (Cl ⁻)3 Cr ³⁺ (Cl ⁻)3								
2015 8	В	90	$2AI_{(s)} + 3Br_{2(l)} \longrightarrow 2AIBr_{3(s)}$								
2015 9	A	69									
2016 1	D	62	EA products of dissolving should be aqueous solutions of $Na^{+}(aq)$ and $Cl^{-}(aq)$ ions EB correct formula for water should be $H_2O(l)$ as water does not dissolve in water EC $NaCl(aq)$ does not exist as $NaCl(s)$ splits up its lattice into $Na^{+}(aq) + Cl^{-}(aq)$ ions D $NaCl(s)$ dissolves in $H_2O(l)$ to form the ions $Na^{+}(aq) + Cl^{-}(aq)$								
2016 7	A	45	☑A silver (I) oxide has the formula Ag ₂ O ☑B silver (II) oxide has the formula AgO ☑C silver (III) oxide has the formula Ag ₂ O ₃ ☑D silver (IV) oxide has the formula AgO ₂								
2017 3	A	67	Dichromate ion formula is $Cr_2O_7^{2-}$.: $Cr_2O_7^{2-}$ ion must be balanced by a 2+ ion .: Zn^{2+}								
2017 7	С	86	$2H_2O_2 \rightarrow 2H_2O + O_2$								

2017 8	В	70	$gfm = \frac{mass}{no. of mol} = \frac{7g}{0.25mol} = 28g mol^{-1}$ $\boxed{\blacksquare A gfm C_2H_6 = (2\times12)+(6\times1) = 24+6 = 30g}$ $\boxed{\blacksquare B gfm C_2H_4 = (2\times12)+(4\times1) = 24+4 = 28g}$ $\boxed{\blacksquare C gfm C_3H_8 = (3\times12)+(8\times1) = 36+8 = 44g}$ $\boxed{\blacksquare D gfm C_3H_6 = (3\times12)+(6\times1) = 36+6 = 42g}$
2017 9	A	56	 ☑ A no of mol = volume × concentration = 0.1litres × 0.4mol l⁻¹ = 0.04mol ☑ B no of mol = volume × concentration = 0.2litres × 0.3mol l⁻¹ = 0.06mol ☑ C no of mol = volume × concentration = 0.3litres × 1.0mol l⁻¹ = 0.3mol ☑ D no of mol = volume × concentration = 0.4litres × 0.5mol l⁻¹ = 0.2mol
2018 7	С	-	concentration = $\frac{\text{no of moles}}{\text{volume}}$ = $\frac{0.1 \text{ mol}}{0.25 \text{ litres}}$ = 0.4 mol l ⁻¹
2019 9	A	-	☑A Calcium hydroxide is the solute as it is the solid which is dissolved ☑B Water is the solvent as it is the liquid doing the dissolving ☑C Calcium hydroxide solution is the solution with the solute dissolved in solvent ☑D Calcium hydroxide must be soluble if it dissolves
²⁰¹⁹ 10	В	-	$1 \text{mol NH}_4 \text{NO}_3 = (1 \times 14) + (4 \times 1) + (1 \times 14) + (3 \times 16) = 14 + 4 + 14 + 48 = 80$ $\% \text{N} = \frac{\text{Mass of nitrogen}}{\text{gfm}} \times 100 = \frac{28}{80} \times 100 = 35\%$

Answer		Reasoning							
	From passage: 0.86g of potassium in 100g of raisins								
0.022 mol	n o. of mol = -	<u>mass</u> = <u>0.86</u> gfm = <u>39</u> = 0.022 mol							
		gfm 39							
	Write down Valency below each ion's symbol	Put in Cross-over Follow arrows and cancel Arrows down to get formula							
KNO	K NO3 ⁻	K NO3							
NINO3		\times KNO ₃							
	1 1								
	gfm C ₉ H ₂₀ = (9x12)+(20x1) = 108+20	0 = 128g							
	n o of mol = $\frac{mass}{gfm}$ = $\frac{32}{128}$ = 0.25mol								
	$C_9H_{20} + 14O_2 \longrightarrow 9CO_2 + 10H_2O$								
99g	1mol	9mol							
	0.25mol	2.25mol							
	gfm CO2 = (1x12)+(2x16) = 12+32 = 4	44g							
	m ass = n o of	f mol x gfm = 2.25 x 44 = 99g							
,0	Element Group	Valency No of Bonds Element Makes							
CI-C'	Carbon 4	4 4							
CI		2 2							
	Chiorine /	1 1							
70%	% For total mass of Fe	100 - (2x56) v100 - ¹¹² v100 - 70%							
/0%	$\%$ re = $gfm Fe_2O_3$	$100 = \frac{100}{(2\times56)+(3\times16)} \times 100 = \frac{100}{160} \times 100 = 70\%$							
	0.022 mol KNO3 99g	0.022 molFrom passage: 0.86g of pno. of mol = -No. of mol = -Write down Valency below each ion's symbolKNO3IIgfm $C_9H_{20} = (9\times12)+(20\times1) = 108+2$ no of ma99g99gGfm $C_2 = (9\times12)+(20\times1) = 108+2$ no of ma99gImol 0.25mol gfm $CO_2 = (1\times12)+(2\times16) = 12+32 =$ mass = no orCI-CCICIElement Group Carbon 4 Oxygen 6 Chlorine 7							

²⁰¹⁴ 13b	0.08 mol l ⁻¹	no. of mol = volume x concentration = 0.016 litres x 0.1 mol l ⁻¹ = 0.0016 mol 2HCl + Na ₂ CO ₃ \longrightarrow 2NaCl + CO ₂ + H ₂ O 2mol 1mol 0.0016 mol 0.0008 mol concentration = $\frac{no. of mol}{volume}$ = $\frac{0.0008 mol}{0.01 litres}$ = 0.08 mol l ⁻¹								
2015 6b	Fe ₂ O ₃	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows to get formulaFeOFeO3232								
²⁰¹⁵ 7b	0.2	$1 \text{mol } CuSO_4 = (1 \times 63.5) + (1 \times 32) + (4 \times 16) = 63.5 + 32 + 64 = 159.5g$ $\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{3.19}{159.5} = 0.02 \text{mol}$ $\text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.02}{0.1} = 0.2 \text{ mol } 1^{-1}$								
2015 14a(i)	Carbon monoxide	$TiO_2 + 2Cl_2 + 2C \longrightarrow TiCl_4 + 2CO$								
²⁰¹⁵ 15b	0.0032	no. of moles = volume × concentration = 0.016 × 0.005 = 0.00008 mol $\begin{array}{c} C_6H_8O_6 + I_2 \longrightarrow C_6H_6O_6 + 2HI \\ \hline 1mol & 1mol \\ 0.00008mol & 0.00008mol \\ \hline 0.00008mol & 0.00008mol \\ \hline concentration = \frac{no. of mol}{volume} = \frac{0.00008mol}{0.025 litres} = 0.0032 mol l^{-1} \end{array}$								
2016 3c (ii)	0.36	2Al + 6HNO ₃ → 2Al(NO ₃) ₃ + 3H ₂ 2mol 6mol 2mol 3mol 0.01mol 0.015mol 1mol gas = 24litres 0.015mol gas = 24litres × $\frac{0.015}{1}$ = 0.36litres								
²⁰¹⁶ 4b	17.3	$\begin{aligned} & \text{Gfm } Al_2 \text{SiO}_5 = (2 \times 27) + (1 \times 28) + (5 \times 16) = 54 + 28 + 80 = 162g \\ & \text{\% } \text{Si} = \frac{\text{total mass of Si}}{\text{gfm } Al_2 \text{SiO}_5} \times 100 = \frac{28}{162} \times 100 = 17.3\% \end{aligned}$								
2016 5c(i)	$CO + O_2 \longrightarrow CO_2$	carbon monoxide + oxygen								
2016 6b	H₃PO₄ + 3NH₄OH ↓ (NH₄)₃PO₄ + 3H₂O	$H_{3}PO_{4} + 3NH_{4}OH \longrightarrow (NH_{4})_{3}PO_{4} + 3H_{2}O$								
²⁰¹⁶ 12d	0.02	n o. of mol = $\frac{mass}{gfm}$ = $\frac{1.8}{90}$ = 0.02 mol								

		w Ale of well 2 model									
2017	20.5	m=41g gfm H ₂ = 2g mol ⁻¹ mass 41a									
2c	20.5	no of moles = $\frac{\text{mass}}{\text{gfm}} = \frac{41g}{2g \text{ mol}^{-1}} = 20.5 \text{ mol}$									
2017		gfm Al ₂ (SO ₄) ₃ = (2×27)+(3×32)+(12×16) = 54+96+192 = 342									
10b	15.8	$\%AI = \frac{\text{total mass of } AI}{\text{afm } AI_2(SO_4)_3} \times 100 = \frac{(2\times27)}{342} \times 100 = \frac{54}{342} \times 100 = 15.8\%$									
100											
		1mol geraniol = (10×12)+(18×1)+(1×16) = 120+18+16 = 154g mass 15.4									
		no. of mol = $\frac{mass}{gfm}$ = $\frac{15.4}{154}$ = 0.1mol									
2017		geraniol + propanoic acid —> geranyl propanoate + water									
	21.0g	$C_{10}H_{18}O + C_{3}H_{6}O_{2} \longrightarrow C_{13}H_{22}O_{2} + H_{2}O$									
12c		1mol 1mol									
		0.1 mol 0.1mol									
		1mol geranyl propanoate = (13×12)+(22×1)+(2×16) = 156+22+32 = 210g									
		mass = no of mol × gfm = 0.1 × 210 = 21.0g									
		Write down Valency below Put in Cross-over Follow arrows to each element's symbol Arrows aet formula									
2018											
	SiO ₂	Si O $ $ Si O $ $ Si ₂ O ₄ $ $									
5c		Cancel Down									
		4 2 4 2 SiO ₂									
2018	N₂ + 3H₂ = 2NH₃										
10a(i)	$N_2 + 3H_2 \leftarrow 2NH_3$										
2018											
13a(ii)	134	Gfm C₄H6O₅ = (4×12)+(6×1)+(5×16) = 48 + 6 + 80 = 134g									
2018		n umber of moles = volume x concentration = 0.00805litres x 0.02mol l ⁻¹									
14b(iii)	0.000161	= 0.000161mol									
	Ec O										
2018	Fe ₂ O ₃	Problem Solving Question									
15c	• O₂ + Fe₅O7										
		gfm CH3OH = (1×12)+(4×1)+(1×16) = 12+4+16 = 32g									
		n = <u>mass</u> = <u>640g</u> <u>gfm</u> = <u>32g mol⁻¹</u> = 20mol									
2010											
2018	960	$CH_{3}OH + H_{2}S \longrightarrow CH_{3}SH + H_{2}O$									
16c		1mol 1mol									
		20mol 20mol									
		gfm CH₃SH = (1×12)+(4×1)+(1×32) = 12+4+32 = 48g									
		m ass = n o of mol × gfm = 20mol × 48g mol ⁻¹ = 960g									
2019		Lactic acid is the harmless product mentioned in the text.									
2d	90	Formula of lactic acid = $C_3H_6O_3$									
20		$1 \text{ mol} = (3 \times 12) + (6 \times 1) + (3 \times 16) = 36 + 6 + 48 = 90$									

		1mol C ₆ H ₁₀ = (6×12) + (10×1) = 72 + 10 = 82g								
2019 5c (i)	140	no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{410}{82}$ = 5mol $C_2H_4 + C_4H_6 \longrightarrow C_6H_{10}$ 1mol 1mol								
		5mol								
2019 8b	beryllium aluminium silicon oxygen									
2019 8c	$BeCl_2 + K \rightarrow Be + KCl$	Beryllium chloride+Potassium \rightarrow Beryllium+Potassium chlorideBeCl2+K \rightarrow Be+KClBeCl2+2K \rightarrow Be+2KCl								
2019 11a	Ca ²⁺ CO ₃ ²⁻	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows to get formulaCaCO3CaCO3Ca2(CO3)2CaCaCaCa3CacCO3222CaCO3								
2019 12a(ii)	21.2	no. of moles = volume x concentration = 0.2litres x 1 mol l ⁻¹ = 0.2mol gfm Na ₂ CO ₃ = (2x23)+(1x12)+(3x16) = 46 + 12 + 48 = 106g mol ⁻¹ mass = no of mol x gfm = 0.2mol x 106 g mol ⁻¹ = 21.2g								
2019 12b(iv)	1.5	no of mol Na ₂ CO ₃ = volume × concentration = 0.015 litres × 1mol l ⁻¹ = 0.01 Na ₂ CO ₃ + 2HCl \rightarrow 2NaCl + H ₂ O + CO ₂ 1mol 2mol 0.015mol 0.030mol concentration = $\frac{\text{no of moles}}{\text{volume}} = \frac{0.030\text{mol}}{0.02\text{litres}} = 1.5 \text{ mol l}^{-1}$								

Na Traffic	-			Pas Unit		•	Qu						J	ABC	che	m
	-	1										1	1	1	1	
Outcome	<u>Int2</u>	<u>Int2</u>		<u>Int2</u>	<u>Int2</u>	<u>Int2</u>			<u>Int2</u>			<u>Int2</u>	<u>Int2</u>		<u>Int2</u>	
	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
37						mc2					L11b(i)	mc2				
38			L1a													
39	L5b			L13c				L11c		mc11 L14a		L4a(ii)	L1b	mc7		
40																
41																
42																
43		L4a	mc4	mc8	L14d	L2a(i)	mc8		L15a		mc7			L6c	L14b	
44 45		mc6	mc5				L3a					mc8			mc6	mc9 L4b(ii)
46	mc25 L11b	L6c(ii)	L4a	L2b	mc2 L2a	mc8 L5a	L1b(i)	L4a(i) L8a	L3a	mc5 L4a	mc8 L2b	L3a	L2b	mc2 mc8	mc9	Mc11 L5b(i)
47	L5c		mc7	mc29			mc10							mc9	mc10	mc10
48a																
48b		mc8			L5b	L4c(ii)	mc9	L14b	mc9				L4c	L6a		
48c																
49							mc2	mc5	mc2	mc2	L2c			mc3	mc2	mc4
50		L4b(ii)	mc22	mc17	mc21	mc21	L13a(i)	mc21	mc23	L12c(i) L12c(ii)			L15a(i)	mc21	L10a	
51	L6b	L9b	L12b L13a	L9d	L8b	L13c	L5b L13a(ii)	L4b	L11a	L4b	mc20 L4b	L3d L5b	L15a(ii)	L12c	L4c(ii)	L12b
52																
Marking Scheme	Not Published	Not Published	Not Published	<u>SQA Int2</u> 2003 MSch	<u>SQA Int2</u> 2004 MSch	<u>SQA Int2</u> 2005 MSch	<u>SQA Int2</u> 2006 MSch	<u>SQA Int2</u> 2007 MSch	<u>SQA Int2</u> 2008 MSch	<u>SQA Int2</u> 2009 MSch	<u>SQA Int2</u> 2010 MSch	<u>SQA Int2</u> 2011 MSch	<u>SQA Int2</u> 2012 MSch	<u>SQA Int2</u> 2013 MSch	<u>SQA Int2</u> 2014 MSch	<u>SQA Int2</u> 2015 MSch

Int2	Answer	% Correct		Reasoning									
²⁰⁰⁰ 25	В	73	c once	ntration = <u>no. of mo</u> volume	$\frac{0.25 \text{ mol}}{0.5 \text{ litres}} = ($	0.5 mol l ⁻¹							
2001 6	В	30	Write down formula Fe2(SO4)	Reverse cross- over rule Fe SO2)3 3 2	Lift valency from each ion I Ion Valency Fe 3 SO4 2	Write Ionic Formula (Fe ³⁺) ₂ (SO ₄ ²⁻) ₃							
2001 8	A	49	gfm Na2CO3 = (2x2		$\frac{16}{m} = \frac{46 + 12 + 48}{\frac{5.3}{m}} = \frac{5.3}{106} = 0.05m$	-							
2002 4	В	74	Write down Formulae of ions Mg SO3 ²⁻	Write down Valency below each ion Mg SO ₃ ² 2 2	Put in Cross-over Arrows Mg SO ₃ 2 2	Follow arrows and cancel down to get formula MgSO3							
²⁰⁰² 5	С	42	Write down Formulae CrCl ₃	Reverse crossove rule from formu Cr Cl 3 1	'	Ionic Formula							
2002 7	С	84	1 mol of (NH4)2SO4	4 = (2×14)+(8×1)+(1x32)+(4x16) = 28	+8+32+64 = 132g							
2002 22	В	28	⊠A no of mol = volur ⊠B no of mol = volur ⊠C no of mol = volur ⊠D no of mol = volur	me × c oncentration me × c oncentration	= 0.2 x 3 = 0.6mol = 0.3 x 1 = 0.3mol								
2003 8	В	89	Write down Formulae of ions Al SO4 ²⁻	Write down Valency below each ion Al SO4 3 2	Put in Cross-over Arrows Al SO4 3 2	Follow arrows to get formula $Al_2(SO_4)_3$							
2003 17	С	55	conce	concentration = $\frac{n_{0.0} \text{ of mol}}{v_{0}}$ = $\frac{0.25 \text{ mol}}{0.5 \text{ litres}}$ = 0.5 mol l ⁻¹									
2003 29	С	93	1 mol of (NH4)2CO	mol of (NH4)2CO3 = (2x14)+(8x1)+(1x12)+(3x16) = 28+8+12+48 = 96g									

2004 2	A	78	☑A HCl(g) + H ₂ O(l) → H ⁺ (aq) + OH ⁻ (aq) is the correct equation ☑B Solution of H ⁺ and OH ⁻ are written as H ⁺ (aq) + OH ⁻ (aq) not H ⁺ (l) + OH ⁻ (l) ☑C Hydrogen chloride gas is written as HCl(g) not HCl(aq) ☑D Solution of H ⁺ and OH ⁻ are written as H ⁺ (aq) + OH ⁻ (aq) not H ⁺ (l) + OH ⁻ (l)				
²⁰⁰⁴ 21	D	70	concentration = $\frac{no. of mol}{volume}$ = $\frac{0.5 mol}{0.250 litres}$ = 2 mol l ⁻¹				
2005 2	D	61	図A magnesium hydroxide contains magnesium, hydrogen and oxygen 図B magnesium phosphate contains magnesium, phosphate and oxygen 図C magnesium sulphite contains magnesium, sulphur and oxygen 図D magnesium nitride contains magnesium and nitrogen				
2005 8	D	53	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
²⁰⁰⁵ 21	С	50	concentration = $\frac{no. of mol}{volume}$ = $\frac{0.2 mol}{0.1 litres}$ = 2 mol l ⁻¹				
2006 2	A	63	Sugar Lemon Juice carbon dioxideThe substance which is dissolvedSolventWaterThe liquid which does the dissolvingSolutionLemonadeThe mixture produced when solute dissolves in solvent				
2006 8	С	71	Write down Formulae of ionsWrite down Valency below each ionPut in Cross-over ArrowsFollow arrows to get formulaAI SO42-AI SO4AI SO4AI SO4AI SO43 2 3 23 23 23 2				
2006 9	В	71	$1 \text{mol } C_6 H_{12} O_6 = (6 \times 12) + (12 \times 1) + (6 \times 16) = 72 + 12 + 96 = 180g$ $\mathbf{n}_0. \text{ of mol} = \frac{\mathbf{m}_{ass}}{\mathbf{gfm}} = \frac{18}{180} = 0.1 \text{ mol}$				
2006 10	A	76	$\square A \ 1 \ mol \ SO_2 = (1x32) + (2x16) = 32+32 = 64g$ $\square B \ 1 \ mol \ CO = (1x12) + (1x16) = 12+16 = 28g$ $\square C \ 1 \ mol \ CO_2 = (1x12) + (2x16) = 12+32 = 44g$ $\square D \ 1 \ mol \ NH_3 = (1x14) + (3x1) = 14+3 = 17g$				
2007 5	С	68	SoluteEthanoic acidThe substance which is dissolvedSolventWaterThe liquid which does the dissolvingSolutionVinegarThe mixture produced when solute dissolves in solvent				
2007 21	В	69	Volume Concentration No of Moles Mass of Solid 100cm ³ 1 mol l ⁻¹ 0.1mol 14.2g 50cm ³ 2 mol l ⁻¹ 0.1mol 14.2g				
2008 2	С	67	 A Ethanoic Acid is the solute (substance which is dissolved) B Saturated describes a solution where no more solute will dissolve in the solvent C Water is the solvent (the liquid which does the dissolving) D Vinegar is the solution (ethanoic acid dissolved in water) 				

0000			1 mol NH3 = (1x14) + (3x1) = 17g					
2008	Δ	81						
9	F	01	n o. of mol = $\frac{mass}{afm}$ = $\frac{1.7}{17}$ = 0.1mol					
			IA n o. of mol = v ol × c oncentration = 0.25 × 0.4 = 0.1mol					
2008	D	17	\square B no. of mol = vol × concentration = 0.25 × 4 = 1 mol					
23	В	47	$\boxtimes C$ no. of mol = vol × concentration = 0.2 × 0.5 = 0.1 mol					
			\blacksquare D no. of mol = vol × concentration = 0.2 × 1 = 0.2 mol					
2009			Solute is the solid being dissolved.					
	C	69	• adding more solute will increase the concentration of the solution.					
2	V	07	 Solvent is the liquid which is doing the dissolving adding many solvent will decrease the concentration 					
			 adding more solvent will decrease the concentration. Image: A Solutions of ions are written Na⁺(aq) + Cl⁻(aq) not Na⁺(l) + Cl⁻(l) 					
2009			$\square B$ (s) = solid, (l) = liquid, (g) = gas and (aq) = aqueous					
5	В	74	$\square C$ water is written as $H_2O(l)$ as water is the solvent not the solute					
Ŭ			🗵 D NaCl is a solid before it is dissolved in the solvent water.					
			Write down Write Down Reverse					
			Formulae of Cross Over Rule Follow arrows to get formula					
2009	•		Ag O Valancy of Ac-1					
11	A	A	Α	4 44				
11			Ag ₂ O X					
			1 2 Valency of O=2					
			Write down Valency below Put in Cross-over Follow arrows and cancel each ion's symbol Arrows down to get formula					
2010								
2010	В	79	Mg SO_3^{2-} Mg SO_3^{2-}					
7	D	17	MgSO ₃					
			• Write down reactants and product formulae $Al(s) + Br_2(l) \rightarrow AlBr_3(s)$					
			1 aluminium on each side $Al(s) + Br_2(t) \rightarrow AlBr_3(s)$					
2010	D	00	: no action					
8	В	89	$ S = 2 \times Br before arrow and 3 \times Br after arrow Al(s) + 3Br_{2(l)} \rightarrow 2AlBr_{3(s)} $					
			∴ make both sides up to 6xBr 1xAl before arrow and 2xAl after arrow					
			$\therefore \text{ make both sides up to 2xAl} \qquad 2Al(s) + 3Br_2(l) \rightarrow 2AlBr_3(s)$					
2010			no. of mol (NH4)2SO4 = volume × concentration = 0.5litres × 1mol l ⁻¹ = 0.5mol					
2010	C	63	$gfm (NH_4)_2 SO_4 = (2x14)+(8x1)+(1x32)+(4x16) = 28+8+32+64 = 132g$					
20	C	00	m ass = n o.of mol × gfm = 0.5 × 132 = 66g					
			🖾 A magnesium hydroxide contains 3 elements (magnesium, hydrogen and oxygen)					
2011		71	B magnesium phosphate contains 3 elements (magnesium, phosphorus and oxygen)					
2	υ	U / I	⊠C magnesium sulphite contains 3 elements (magnesium, sulphur and oxygen)					
			☑D magnesium nitride contains 2 elements (magnesium and nitrogen)					
2011	_		Chromium chloride Chloride ions have 3 chloride ions per chromium Chromium ion must have 3+ charge has the formula the formula chloride to balance charge					
8	С	54						
U	_		$CrCl_{3} \qquad Cl^{-} \qquad Cr^{n+}(Cl^{-})_{3} \qquad Cr^{3+}(Cl^{-})_{3}$					

2013 2	A	83	$\square A \ HCl_{(g)} + H_2O(I) \rightarrow H^{+}(aq) + Cl^{-}(aq)$ is the correct equation including state symbols $\square B$ hydrogen chloride HCl is a gas in the question but a liquid in the equation $\square C$ hydrogen chloride HCl is a gas in the question but an aqueous in the equation				
2			Image: A set of the rest of the set of t				
2013 3	В	69	SoluteSubstance which is dissolved (ethanol)SolventLiquid which does the dissolving (water)SolutionMixture of solute dissolved in the solvent (whisky)				
2013 7	В	39	IA vanadium (V) oxide has a formula V2O5 IB vanadium (IV) oxide has a formula VO2 IC vanadium (III) oxide has a formula V2O3 ID vanadium (II) oxide has a formula VO				
2013 8	A	64	Equation in question $4NH_3 + xO_2 \rightarrow 4NO + yH_2O$ 12H before arrow $4NH_3 + xO_2 \rightarrow 4NO + gH_2O$ $\therefore 6H_2O$ required to balance 12H $4NH_3 + xO_2 \rightarrow 4NO + 6H_2O$ $4NO + 6H_2O$ before arrow = 10xO $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $\therefore 5O_2$ required to balance 10xO $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$				
2013 9	D	82	 ☑ A gfm of CO = (1×12) + (1×16) = 12 + 16 = 28g ☑ B gfm of CO₂ = (1×12) + (2×16) = 12+32 = 44g ☑ C gfm of N₂ = (2×14) = 28g ☑ D gfm of CH₄ = (1×12) + (4×1) = 12+4 = 16g 				
²⁰¹³ 21	С	60	concentration = $\frac{n_0. \text{ of moles}}{v_0 \text{ lume}} = \frac{0.25 \text{ mol}}{0.5 \text{ litres}} = 0.5 \text{ mol } l^{-1}$				
2014 2	A	76	☑A water is the liquid which does the dissolving ∴ water is the solvent 포B sugar is a solid which is dissolved ∴ sugar is a solute 포C lemon juice is a liquid which is dissolved ∴ lemon juice is a solute 포D carbon dioxide is a gas which is dissolved ∴ carbon dioxide is a solute				
2014 6	A	54	Phosphate PO4 ³⁻ is listed in data booklet page 8 Total negative charge in Zn3(PO4)2 formula is 6- as there are two phosphate ions All ionic compounds are neutral over all so the total positive charge must be 6+ Total positive charge in 3 zinc ions = 6+ Positive charge on zinc ion = ⁶⁺ /3 = 2+				
			Fe_2O_3 + $CO \rightarrow Fe$ + CO_2				
			Fe: $2xFe$ before arrow but $1xFe$ after arrow \therefore double Fe after arrow Fe ₂ O ₃ + CO \rightarrow 2Fe + CO ₂				
2014	C		O: 4xO before arrow but 2xO after arrow \therefore double CO2 after arrowFe2O3+CO \rightarrow 2Fe+2CO2				
9	C	90	C: 1xC before arrow but 2xC after arrow \therefore double CO before arrow Fe ₂ O ₃ + 2CO \rightarrow 2Fe + 2CO ₂				
			O: $5 \times O$ before arrow but $4 \times O$ after arrow \therefore increase CO to 3 before arrow Fe_2O_3 + $3CO$ \rightarrow $2Fe$ + $2CO_2$				
			C: $3xC$ before arrow but $2xFe$ after arrow \therefore increase CO_2 to 3 after arrow Fe_2O_3 + $3CO \rightarrow 2Fe$ + $3CO_2$				
²⁰¹⁴ 10	С	81					

2015 4	В	83	図A Solute: the substance which is dissolved 図B Solvent: the liquid which does the dissolving 図C Solution: the mixture formed when solute dissolves in solvent 図D Saturated: a solution where no more solute can dissolve in the solvent			
2015 9	В	68	has the formula	Nitrate ions have the formula NO3-	³ nitrate ions per iron nitrate Fe ⁿ⁺ (NO ₃ ⁻) ₃	iron ion must have 3+ charge to balance charge Fe ³⁺ (NO ₃ ⁻) ₃
²⁰¹⁵ 10	A	87	⊠B 1mol CO = (1×12) ⊠C 1mol CO2 = (1×12))+(1×16) = 12+1)+(2×16) = 12+3	32 =64g ∴ 0.2mol = 64 6 =28g ∴ 0.2mol = 28 2 =44g ∴ 0.2mol = 44 =17g ∴ 0.2mol = 17 :	x 0.2 = 5.6g x 0.2 = 8.8g
2015 11	С	49	2AI 2mol 1mol	+ CuSO4 -		(SO ₄) ₃

Int2	Answer		Rea	soning	
		Write down Formulae of elements	Write down Valency below each ion	Put in Cross-over Arrows	Follow arrows and cancel down to get formula
2000 5b	SnF ₂	Sn F	Sn F 2 1	Sn F 2 1	SnF ₂
2000 5c	144g	1mol Na2PO3F = (2	x23) + (1x31) + (3>	<16) + (1x19) = 46 +	· 31 + 48 + 19 = 144g
2000 6b	145.5kg	6CO ₂ + 6mol 1mol 4545.5mol 1mol O ₂ = 2x16 = 32g	of mol = <u>mass</u> gfm 6H ₂ O —	$= \frac{200000}{44} = 49$ $\longrightarrow C_6H_{12}C$ 45.5 × 32 = 145456	D ₆ + 6O ₂ 6mol 1mol 4545.5mol
2000 11b	$4AI + 3O_2 \rightarrow 2AI_2O_3$	4 AI + 3O ₂	$\rightarrow 2AI_2O_3$		
2001 4a	Cu(NO 3)2	Write down Formulae of ions Cu NO3 ⁻	Write down Valency below each ion Cu NO3 ⁻ 2 1	Put in Cross-over Arrows Cu NO ₃ 2 1	Follow arrows and cancel down to get formula Cu(NO ₃) ₂
2001 4 b(ii)	0.05	n o. of mol = v olume	e x c oncentration :	= 0.25litres x 0.2 ma	ol l ⁻¹ = 0.05mol
2001 6c (ii)	Fe2O3 + 3CO ↓ 2Fe + 3CO2	Fe2O3 + 30	$CO \longrightarrow 2F$	e + 3CO ₂	
2001 9b	600.9g	1mol O2 = (2×16) =	of mol = <u>mass</u> <u>gfm</u> <u>Imol</u> 32g	$f(5) = 7 + 35.5 + 64 = \frac{1000}{106.5} = \frac{1000}{106.5} = \frac{1000}{2000}$ $f(5) = \frac{1000}{106.5} = \frac{1000}{1000}$ $f(5) = \frac{1000}{1000}$ $f(5) = \frac{1000}{1000}$ $f(5) = \frac{1000}{1000}$ $f(5) = \frac{1000}{1000}$	9.39mol 2 I nol

		Write Formulae of			wn Valency ach atom	Put Cross-ove		Follow arrows to get formula
2002		Ba	Cl	Ba	Cl	Bą	Cl	
1a	BaCl ₂						$\langle $	BaCl ₂
				2	1	2	1	
2002	C ₄ H ₁₀ + 13N ₂ O	C ₄ H ₁₀ +	+ 13N	J ₂ O –		4 <i>CO</i> 2	2 + 5ł	1 ₂ O +
4a	4CO₂ + 5H₂O + 13N₂	13N2						
2002 12b	605g	1	no. I2 - Imol 38mol ×127) = 2	of mol = + C; 1 2.3 254g	36 + 6 = 47 <u>mass</u> gfm 3H6 - mol 88mol mol × gfm	- = <u>100</u> 42	• C ₃	H ₆ I ₂
2002 13a	31.9	no. of mol = mass = no. (ol l ⁻¹ - 0.2 mol
2003 2b	2 mol		2			-		ol
2003 9d	24.1g		4.5g no. Mg + 1mol .2mol 4 = (1×24	of mol = H2SO .5) + (1×3	<u>mass</u> gfm 4 32) + (4×1) mol × gfm	→ M (6) = 24.5	= 0.2r gSO 4 1mol D.2mol + 32 + 64	nol + H2 4 = 120.5g
2003 13c	Cr ₂ O ₃	Write Formulae Cr	down	Write do	wn Valency each ion O	Pu	t in er Arrows O 2	Follow arrows to get formula Cr ₂ O ₃
2004 2a	$2CO + 2NO$ \downarrow $2CO_2 + N_2$		2CO	+ 2N	0 —	→ 2	2002	+ N ₂
2004 5b	0.5	1 mol urea H₂N		(4×1) = (2×: of mol = -	mass		+ 28 + 12 + = 0.5 mol	-

		gfm FeO = (1x56) + (1x16) = 56 + 16 = 72g						
		no. of mol = <u>mass</u> = <u>144000</u> = 2000 mol						
0004		_						
2004	304	$FeO + H_2SO_4 \longrightarrow FeSO_4 + H_2O$						
8b	304	1mol 1mol						
		2000mol 2000mol						
		1mol FeSO4 = (1x56) + (1x32) + (4x16) = 56 + 32 + 64 = 152g						
		mass = no. of mol × gfm = 2000 × 152 = 304000g = 304kg						
		Write down Write down Valency Put in Follow arrows to						
		Formulae of ions below each ion Cross-over Arrows get formula						
2004		Na S ₂ O ₈ ²⁻ Na S ₂ O ₈ ²⁻ Na S ₂ O ₈						
14d	$Na_2S_2O_8$							
ITU		$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $						
		Write down Write down Valency Put in Follow arrows to						
		Formulae of ions below each ion Cross-over Arrows get formula						
2005		$ Na CO_3^{2-} Na CO_3 Na CO_3 $						
2a (i)	Na ₂ CO ₃	Na ₂ CO ₃						
2005	0.02	n o. of mol = <u>mass</u> = <u>1.27</u> <u>gfm</u> = <u>63.5</u> = 0.02 mol						
4 c(ii)	0.02	gfm 63.5						
	C2H4 + 3O2							
2005	.1.	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$						
5a		$C_2 \Gamma_{14} + 3O_2 - 2CO_2 + 2\Gamma_{12}O_2$						
	2CO2 + 2H2O							
		$1 \mod NH_4Cl = (1 \times 14) + (4 \times 1) + (1 \times 35.5) = 14 + 4 + 35.5 = 53.5g$						
		n o. of mol = <u>mass</u> = <u>10</u> <u>gfm</u> = <u>53.5</u> = 0.187 mol						
		gfm 53.5						
2005	3 19 0	NH₄CI + NaOH → NaCI + H₂O + NH₃						
13c	3.18g	1mol 1mol						
		0.187mol 0.187mol						
		1mol NH3 = (1×14) + (3×1) = 14 + 3 = 17g						
		$mass = no. of mol \times gfm = 0.187 \times 17 = 3.18g$						
	2CH₃SH + H₂	······································						
2006	LUF 13UF1 + F12							
1b(i)	\downarrow	$2CH_3SH + H_2 \longrightarrow C_2H_6 + 2H_2S$						
TD(I)	C ₂ H ₆ + 2H ₂ S							
2007	02110 . 21120							
2006	2-	Formula Ionic Formula Charge on oxide ion						
3a	E	Fe_2O_3 (Fe ³⁺) ₂ (O ²⁻) ₃ O ²⁻						
Ju								

		gfm of $CH_3OH = (1 \times 12) + (4 \times 1) + (1 \times 16) = 12 + 4 + 16 = 32g$				
		no. of mol = <u>mass</u> = <u>16</u> <u>32</u> = 0.5 mol				
2024		gfm 32				
2006	30g	$CH_3OH + CO \longrightarrow CH_3COOH$				
5b	oog	1mol 1mol				
		0.5mol 0.5mol				
		gfm CH ₃ COOH = (2x12) + (4x1) + (2x16) = 24 + 4 + 32 = 60g				
		m ass = n o. of mol × gfm = 0.5 × 60 = 3.18g				
2006	0.1					
13a(i)	0.1	n o. of mol = v olume × c oncentration = 0.1 litres × 1 mol l ⁻¹ = 0.1 mol				
2006		citric acid + sodium hydrogencarbonate → products				
	0.3	1mol 3mol				
13a(ii)		0.1mol 0.3mol				
2007		Magnesium chloride is soluble in water (p8 of data booklet)				
4 a(i)	(aq)	The symbol of dissolved in water is (aq), which means aqueous				
		gfm Mg = 24.3g				
		n o. of mol = <u>mass</u> = <u>4.9</u> <u><u></u>24.5</u> = 0.2 mol				
2007	0.4	Mg + 2HCl ──→ MgCl₂ + H₂				
4b	0.4	1mol 1mol				
		0.2mol 0.2mol				
		$gfm H_2 = 2g$				
	C ₆ H ₁₂ O ₆	m ass = n o. of mol × gfm = 0.2 × 2 = 0.4g				
2007	C6H12U6					
8a	√ 2C₂H₅OH + 2CO₂	$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$				
	202H50H + 2002	During the second secon				
		Write down Valency belowPut in Cross-overFollow arrows toeach element's symbolArrowsget formula				
2007		ger for mana				
	Fe ₂ O ₃	Fe O Fe O				
11c		$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $				
		$3 2 3^{*} 2$				
2007						
	3.6g	45% of 8g = $\frac{45}{100}$ × 8g = 3.6g				
14b(i)	5	100 5 5				
2007	0.075	mass 3.6 0.075 mil				
14b(ii)	0.075mol	no of mol = $\frac{mass}{gfm}$ = $\frac{3.6}{48}$ = 0.075 mol				
2008	4N2O + CH4					
3a	\checkmark	$4N_2O + CH_4 \longrightarrow 4N_2 + CO_2 + 2H_2O$				
Ju	4N ₂ + CO ₂ + 2H ₂ O					
,i						

[]							
		gfm Al = 27g					
		n o of mol = <u>mass</u> = <u>0.135</u> = 0.005 mol					
2000							
2008	1.62	$3Ag_2S + 2AI \longrightarrow 6Ag + AI_2S_3$					
11a		2mol 6mol					
		0.005mol 0.015mol					
		gfm Ag = 108g					
		m ass = n o. of mol × gfm = 0.015 × 108 = 1.62g					
		Write downWrite down ValencyPut inFollow arrows toFormulae of ionsbelow each ionCross-over Arrowsget formula					
2008	KMnO₄	$ K^{+} MnO_4^{-} K^{+} MnO_4^{-} K MnO_4 $					
15a	N/V/I/O4	KMnO ₄					
	Fe ₂ O ₃ + 3CO						
2009	J	$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$					
4a	₩ 2Fe + 3CO2						
	210 + 3002	gfm C = 12g					
		no of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{1200000g}{12 \text{ g mol}^{-1}}$ = 100000 mol					
2009		$CO_2 + C \longrightarrow 2CO$					
4b	5600	_					
טד		1mol 2mol					
		100000mol 200000mol Gfm Co = (1x12)+(1x16) = 12+16 = 28g					
		mass = no. of mol × gfm = 200000 × 28 = 5600000g = 5600kg					
2009							
12c(i)	0.1	n o. of moles = v olume × c oncentration = 0.1litres × 1.0 mol l ⁻¹ = 0.1mol					
120(1)							
2009	0.05	$2MnO_{4}^{-} + 5C_{2}H_{2}O_{4} + 6H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O$ $2mol \qquad 5mol$					
12c(ii)	0.25	0.1mol $5mol \times {}^{0.1}/_2$					
		= 0.25mol					
		Write down Valency below Put in Cross-over Follow arrows to					
2000		each element's symbol Arrows get formula					
2009	Fe_2O_3	Fe O Fe O					
14a		Fe_2O_3					
		$3 2 3^{*} 2$					
2010	(s) (l) (aq)	$NH_4NO_3(s) + H_2O(l) \longrightarrow NH_4NO_3(aq)$					
2b	(S) (I) (UQ)	(1) (1)					
2010		Solute Substance which is dissolved					
2c	Solvent	Solvent Liquid which does the dissolving					
		Solution Mixture of solute dissolved in the solvent					

		gfm Ag = 108g						
			f mol = <u>mass</u> gfm	$\frac{s}{n} = \frac{1.08}{108} =$	0.01 mol			
2010		$4Ag + 2H_2S + O_2 \longrightarrow 2Ag_2S + 2H_2O$						
4b	1.24	4mol			2mol			
		2mol			1mol			
		0.01mol gfm Ag2S = (2x108)	·(1v32) = 216-		005mol			
				x gfm = 0.005 x 2	248 = 1.24g			
2010			eaning		Example			
	calcium,	-ide 2 elements in co -ate 2 elements in co	mpound mpound + oxygen		e = copper + sulphur e = copper + sulphur + oxyge	en		
11b(i)	carbon and oxygen	-	mpound + oxygen mpound + oxygen		e = copper + sulphur + oxyge e = sodium + sulphur + oxyge			
2011			•	•				
За	$2H_2O_2 \rightarrow O_2 + 2H_2O$	2H	₂ O ₂ —	$\rightarrow O_2 +$	2H ₂ O			
2011		2H	₂ O ₂ —	→ O ₂ +	2H₂O			
3d	0.6	34	g	12litres				
50		1.7	'g	12litres x	^{1.7} / ₃₄			
			Dut	= 0.6litres	C.U.			
	RuCl ₂	Write down Valen each element's	-/	in Cross-over Arrows	Follow arrows to get formula			
2011		Ru		Ru Cl	5			
4 a(ii)								
		2	1	2 1	RuCl ₂			
		1mol (NH ₄) ₂ SO ₄ = (2×14)	+ (8×1) + (1×32) +	+ (4x16) = 28+8+32+	64 = 132g			
		n o of r	nol = <u>mass</u> gfm	$-=\frac{13200g}{122 \text{ small}^{-1}}$	-= 100 mol			
2011	9.6		•	- 132g mol ⁻¹				
5b)₃ + CaSO₄ —	•)2504 + CaCO3			
50		1mol 1mol 100mol 100mol						
		$100m01 100m01 100m01 100m01 100m01 100m01 100m01 1m01 (NH_4)_2CO_3 = (2x14) + (8x1) + (1x12) + (3x16) = 28+8+12+48 = 96g$						
			1 -	fm = 100 × 96 = 9	<u> </u>			
		Write down Valen each element's	.,	in Cross-over Arrows	Follow arrows to get formula			
2012		Sb		Sb O	yer for main			
1b	Sb ₂ O ₃	50						
		2			Sb ₂ O ₃			
		3	2 3	5 2				
2012		NaN ₃	\rightarrow	Na	+ N ₂			
2b	$NaN_3 \rightarrow Na + N_2$	sodium azide		Metal elements	nitrogen g Nitrogen is a	L		
2012				ome as single atoms ass 1.8	diatomic eleme	nt		
4c	0.02	n o. or	f mol =	$\frac{ass}{fm} = \frac{1.8}{90}$	= 0.02 mol			
			9					

2012 15a(i)	0.5	n o. of mol = v olume × c oncentration = 0.25 litres × 2 mol l ⁻¹ = 0.5 mol					
2012 15a(ii)	40g	$\begin{array}{c} gfm \ Fe_2O_3 = (2\times56) + (3\times16) = 112 + 48 = 160g \\ Fe_2O_3 + 2H_3PO_4 & \longrightarrow 2FePO_4 + 3H_2O \\ 1mol & 2mol \\ 0.25mol & 0.5mol \\ Mass \ Fe_2O_3 = no. \ of \ mol \times gfm = 0.25 \times 160 = 40g \end{array}$					
2013 6a	0.01	n o. of mol = $\frac{mass}{gfm}$ = $\frac{1.57}{157}$ = 0.01 mol					
2013 6c	Ca3(PO4)2	Write down Valency below each ion's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaCaPO43-CaPO43-23CaPO43-2323					
²⁰¹³ 12c	8.52	$gfm C_{18}H_{36}O_2 = 890g \text{ (in question)} \\ \textbf{no of mol} = \frac{mass}{gfm} = \frac{8.9}{890} = 0.01 \text{ mol} \\ glyceryl \text{ tristearate + water} \longrightarrow glycerol + stearic acid \\ C_{57}H_{110}O_6 + 3H_2O \longrightarrow C_3H_8O_3 + 3C_{18}H_{36}O_2 \\ 1 \text{ mol} & 3 \text{ mol} \\ 0.01 \text{ mol} & 0.03 \text{ mol} \\ gfm C_{18}H_{36}O_2 = (18\times12)+(36\times1)+(2\times16) = 216+36+32 = 284g \\ mass = \textbf{no. of mol} \times gfm = 0.03 \times 284 = 8.52g \\ \end{cases}$					
2014 4c (ii)	1490	$1 \mod NH_3 = (1\times14)+(3\times1) = 14+3 = 17g$ $no of mol = \frac{mass}{gfm} = \frac{510}{17} = 30 \mod 1$ $3NH_3 + H_3PO_4 \longrightarrow (NH_4)_3PO_4$ $3 \mod 1 \mod 1$ $30 \mod 1 \mod 1$ $1 \mod (NH_4)_3PO_4 = (3\times14)+(12\times1)+(1\times31)+(4\times16) = 42+12+31+64 = 149g$ $mass = no. of \mod x gfm = 10 \times 149 = 1490g$					
²⁰¹⁴ 10a	1	$1 \text{mol } CH_{3}COOH = (2 \times 12) + (4 \times 1) + (2 \times 16) = 24 + 4 + 32 = 60g$ $\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{6}{60} = 0.1 \text{ mol}$ $\text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.1 \text{mol}}{0.1 \text{litres}} = 1 \text{ mol } 1^{-1}$					
²⁰¹⁴ 14b	Al(OH)₃	Write down Valency below each ion's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaAIOH ⁻ AIOH ⁻ 31AIOH ⁻ 3131					

2015 4 b(ii)	Na⁺H⁻	Sodium is a group 1 metal so forms an sodium ion with formula Na ⁺ The negative ion to balance this is the hydride ion will formula H ⁻ . The cross over rule would give the formula NaH as both ions have a valency of one.
2015 5b(i)	TiCl₄ + 4Na ↓ Ti + 4NaCl	TiCl₄ + 4Na → Ti + 4NaCl
²⁰¹⁵ 12b	0.2	$1 \mod CuSO_4 = (1\times63.5)+(1\times32)+(4\times16)=63.5+32+64 = 159.5g$ no of mol = $\frac{mass}{gfm} = \frac{3.19}{159.5} = 0.02 \mod 1000$ concentration = $\frac{no of mol}{volume} = \frac{0.02 \mod 1000}{0.11 \ tres} = 0.2 \mod 1^{-1}$

Na	115			Pas	st Po	aper	Qu	estic	on B	ank			-	Copy	yright	
Traffic	: Lights			Unit	1.3	a Cl	nemi	cal	Forn	nulae	2		J	A150	cher	M
Outcome										2009						
	<u>Credit</u>															
37		13a(i)						17a						11a(i)		
38	13a											16b(ii)				
39							11c									
40								17d								
41																
42																
43																
44 45		18b	14d		17a			19b	20b	10b	13c 16a(i)	18c	15d	16b(ii)		
46	13e	12a	12a(i)	10b(i)	17b(i)	16a	16a	10c(i)	12b	16b	14b(i)	20a(i)	15a			
47																
48a																
48b				19b												
48c					11b(ii)					16d			21c(ii)			
49																
50		14c	19a(ii)	19b	21b(ii)			20a	14c			20c(ii)	17b	18b(i)		
51	18b	12c	15b(ii)	12c		20b	15a		20a	19c	12e	17b		17c		
52		13c(ii)	12b	15c	11b(i) 17c	11b	11b	17c	16a	14b	16a(ii)		15c 21c(i)	16b(i)		

SG Credit	Answer	Reasoning										
		Si in group 4 has valency = 4, 0 in group 6 has valency = 2										
		Use cross over rule and cancel down to achieve formula SiO2										
20000		Write down Valency below each ion's symbol Put in Cross-over Arrows Follow arrows and cancel										
2000C	SiO ₂											
13a		$ S_1 O S_1 O S_{12}O_4 $										
		4 2 4 2 SiO ₂										
2000C												
13b	Chlorine Cl2 gas	Problem Solving Question: Si + 2Cl₂ → SiCl₄										
		$1 \mod C_3 H_8 = (3 \times 12) + (8 \times 1) = 36 + 8 = 44g$										
		n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{22g}{44g \text{ mol}^{-1}}$ = 0.5mol										
2000 <i>C</i>	36g	$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$										
18b		1mol 4mol 0.5mol 2mol										
		1mol $H_2O = (2\times1)+(1\times16) = 2 + 16 = 18g$										
20010	CH4 + 2O2	m ass = n o. of mol × gfm = 2mol × 18g mol ⁻¹ = 36g										
2001C	↓	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$										
12a	CO ₂ + 2H ₂ O											
		$1 \text{mol } H_2 S = (2 \times 1) + (1 \times 32) = 2 + 32 = 34g$ $mass \qquad 34a$										
		no. of mol = $\frac{mass}{gfm}$ = $\frac{34g}{34g \text{ mol}^{-1}}$ = 1mol										
2001 <i>C</i>	48g	$2H_2S + SO_2 \longrightarrow 2H_2O + 3S$										
12c	log	2mol 3mol 1mol 1.5mol										
		1mol S = 32g										
		m ass = n o. of mol × gfm = 1.5mol × 32g mol ⁻¹ = 48g										
2001 <i>C</i>	ammonium phosphate	Data booklet p8 gives names of NH4⁺ and PO4³⁻ ions										
13a(i)	annoniun prosphure											
2001 <i>C</i>	A (7 0/	gfm $CO(NH_2)_2 = (1\times12) + (1\times16) + (2\times14) + (4\times1) = 12 + 16 + 28 + 4 = 60g$										
13c(ii)	46.7%	%N = $\frac{\text{mass of N}}{\text{gfm}}$ × 100 = $\frac{28}{60}$ × 100 = 46.67%										
		1mol Ca = 40g										
2001C	0.01mol l ⁻¹	n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.4\text{g}}{40\text{g mol}^{-1}}$ = 0.01mol										
14c		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.01\text{mol}}{1 \text{ litre}}$ = 0.01mol/l										
		Write down Valency below each Put in Follow arrows and cancel down										
		ion's symbol Cross-over Arrows to get formula										
2001 <i>C</i>		Ca OH ⁻ Ca OH ⁻ Ca(OH) ₂										
18b	Ca²+(OH⁻)₂	Work out charges on ions. If more than one of ion put ion in										
=		2 1 2 1 brackets and number outside										
		C^{-1} C^{-1} $Ca^{2+}(OH^{-})_{2}$										

2002C 12a(i)	TiCl₄ + 2H₂O ↓	TiCl₄	+ 2H ₂ O		TiO ₂	+ 4HCl					
	TiO ₂ + 4HCl		(4 40) (0 4()	40.00.00	•						
2002 <i>C</i>	60%	gfm 1102 =	(1x48) + (2x16) =								
12b	0078		$\%$ Ti = $\frac{\text{mass of Ti}}{\text{gfm}} \times 100 = \frac{48}{80} \times 100 = 60\%$								
		eact	own Valency below 1 ion's symbol	Follow arrows and cancel down to get formula							
2002C	(Na⁺)₂CO3 ²⁻	Na	CO ₃ ²⁻ 2	Na	CO ₃ ²⁻	Na ₂ CO ₃ Work out charges on ions. If					
14d						more than one of ion put ion in brackets and number outside					
		1	2	1	2	$(Na^{+})_{2}CO_{3}^{2-}$					
		1mol Fe2O3	= (2x56) + (3x16)		5						
			n o. of mol	= <u>mass</u> gfm =	1600g 160g mol ⁻¹	= 10mol					
			Fe ₂ O ₃ +	3CO —	→ 2Fe	e + 3CO ₂					
2002 <i>C</i>	1120 tonnes		1mol		2mo						
15b(ii)	1120 Tonnes	1mol Fe =	10mol 560		20m	bl					
		11110116-	mass = no. of m	nol × gfm =	20mol x 56	og mol ⁻¹ = 1120g					
		160g	Fe ₂ O ₃ pr	roduces	1120g	of Fe					
			nnes Fe_2O_3 pr			es of Fe					
2002 <i>C</i>	0.00201mol	n o. of mo	l = volume		entration						
19a (ii)	0.00201m01		= 0.0201litre = 0.00201 m		.1 mol/l						
	CH4 + 2O2										
2003 <i>C</i>	L L	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$									
10b(i)	CO ₂ + 2H ₂ O										
	002+21120	no of mold	H₂ = 0.5mol (in que	stion)							
			•		→ ZnC	$1_2 + H_2$					
2003 <i>C</i>	32.75g		1mol		•	1mol					
12c		1mol Zn =	0.5mol 65.5q			0.5mol					
			of mol × gfm = (0.5mol x 65	5.5g mol ⁻¹ =	32.75g					
2003 <i>C</i>	<u> </u>	gfm Ca₃(PC	0 ₄) ₂ = (3x40) + (2x			-					
15c	38.7%		%Ca = <u>mass o</u> gfn	<u>f Ca</u> x 100	$) = \frac{120}{310}$	× 100 = 38.7%					
		1 mol CuCl	2 = (1x 63.5) + (2	2×35.5) = 13	34.5g						
		n o. of mo	l = volume x co		on						
2003 <i>C</i>	(705		= 0.05litres x	1 mol/l							
19b	6.725g	mass of	= 0.05mol CuCl2 = n o. of m		fm						
		mass of (ol x 134.	9fm .5a mol ⁻¹						
			= 0.05m		.09 1101						
			5								

		1									
2004 <i>C</i>	0.2976	5% of 5.74g = $\frac{5}{100}$ × 5.74g = 0.287g									
11b(i)	0.287g	$5\% 67 5.74g = \frac{100}{100} \times 5.74g = 0.287g$									
2004 <i>C</i>		1mol Al = 27g									
11b(ii)	0.0106 mol	n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.287g}{27g \text{ mol}^{-1}}$ = 0.0106mol									
2004 <i>c</i> 17a	Na⁺HCO3⁻	Write down Valency below each ion's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaNaHCO3^-NaHCO3^-NaHCO3^-1111NaHCO3^-Work out charges on ions. If 									
2004C	3Ag ₂ S + 2Al										
17b(i)	↓ 6Ag + Al₂S₃	$3Ag_2S + 2AI \rightarrow 6Ag + AI_2S_3$									
2004 <i>C</i>		gfm Al ₂ S ₃ = (2x27) + (3x32) = 54 + 96 = 150g									
17c	36%	%C = $\frac{\text{mass of Al}}{\text{qfm}} \times 100 = \frac{54}{150} \times 100 = 36\%$									
2004 <i>C</i> 21b(ii)	0.00412 mol	no. of mol = volume × concentration = 0.0206litres × 0.20 mol/l = 0.00412 mol									
2005C	_	gfm C ₈ H ₈ = (8×12) + (8×1) = 96 + 8 = 104g									
11b	92.3%	$%C = \frac{\text{mass of } C}{\text{qfm}} \times 100 = \frac{96}{104} \times 100 = 92.3\%$									
2005 <i>C</i> 16a	Equation showing:	$2HCI + Na_2S_2O_3 \longrightarrow 2NaCI + S + SO_2 + H_2O$									
2005 <i>C</i> 20b	0.15	$1 \text{ mol Al} = 31g$ $no. \text{ of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1.35g}{27g \text{ mol}^{-1}} = 0.05 \text{mol}$ $2\text{Al} + 3\text{H}_2\text{SO}_4 \longrightarrow \text{Al}_2(\text{SO}_4)_3 + 3\text{H}_2$ $2\text{mol} \qquad \qquad$									
2006C	00 7 %	gfm Pb ₃ O ₄ = (3x207) + (4x16) = 621 + 64 = 685g									
11b	90.7%	%Pb = $\frac{\text{mass of Pb}}{\text{gfm}}$ x 100 = $\frac{621}{685}$ x 100 = 90.7%									
2006 <i>C</i> 11c	Cr ₂ O ₃	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows and cancel down if necessary to get formulaCrOCrO3232									

		$1 \mod N_2 O = (2 \times 14) + (1 \times 16) = 28 + 16 = 44g$
		no. of mol = $\frac{mass}{gfm}$ = $\frac{22g}{44g mol^{-1}}$ = 0.5mol
2006C		$2N_2O \longrightarrow 2N_2 + O_2$
15a	8g	$2mol \qquad 2mol \qquad 1mol$
100		0.5mol 0.25mol
		1mol O2 = 32g
		m ass = n o. of mol × gfm = 0.25mol × 32g mol ⁻¹ = 8g
2006C	Ba(OH)₂ + 2NH₄Cl	
16a	↓ 2NU - D-CL - 2U - O	$Ba(OH)_2 + 2NH_4CI \longrightarrow 2NH_3 + BaCl_2 + 2H_2O$
	$2NH_3 + BaCl_2 + 2H_2O$	
2007 <i>C</i>	2AgNO₃ + Cu	24×10^{-1} Cu 24×10^{-1}
10c(i)		$2AgNO_3 + Cu \longrightarrow 2Ag + Cu(NO_3)_2$
20070	2Ag + Cu(NO ₃) ₂	
2007 <i>C</i>	zinc sulphide	-ide Compound contains the two named elements NB metal -ate Compound contains 3 elements (two named elements + oxygen) always comes
17a		-ite Compound contains 3 elements (two named elements + oxygen) first in name
2007C	F4 600	1 mol CaF2 = 40 + 19 + 19 = 78g
17c	51.3%	$%Ca = \frac{\text{mass of } Ca}{\text{mass of } CaE_2} \times 100 = \frac{40}{78} \times 100 = 51.3\%$
2007 <i>C</i>	Fe ₂ O ₃ + CO	The reaction in a blast furnace has the reduction of iron ore (Fe ₂ O ₃) by carbon monoxide.
17d	↓	Carbon monoxide is made by incomplete combustion of carbon in the blast furnace.
1/4	Fe + CO 2	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
2007 <i>C</i>		
19b	Ni ²⁺ (NO ₃ ⁻) ₂	NO_3^- ions have a valency of 1. Use cross over rule to calculate formula
2007C		
20a	0.2	n o. of mol = v olume x c oncentration = 0.05litres x 4 mol/l = 0.2 mol
2008 <i>C</i>		
	2NaN₃ → N₂ + 2Na	Balancing Equation Exercise [Clue: Get 6 Nitrogens on both sides]
12b		-
2008 <i>C</i>	0.0000	n o. of mol. = v olume × c oncentration
14c	0.0033	= 0.33l × 0.01 mol/l = 0.0033 mol
2008 <i>C</i>		$1 \text{ mol } PbSO_4 = 207 + 32 + (4x16) = 207 + 32 + 64 = 303g$
	68.3%	$\text{``Pb} = \frac{\text{mass of Pb}}{\text{mass of PbSO_4}} \times 100 = \frac{207}{303} \times 100 = 68.3\%$
16a		
		1 mole Fe ₂ O ₃ = (2×56) + (3×16) = 112 + 48 = 160g m ass 40g
		n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{40g}{160g \text{ mol}^{-1}}$ = 0.25mol
2008 <i>C</i>	28-	$2AI + Fe_2O_3 \longrightarrow 2Fe + AI_2O_3$
20a	28g	1mol 2mol
		0.25mol 0.5mol
		1mol Fe = 1x56 = 56g m ass = n o. of mol x gfm = 0.5mol x 56g mol ⁻¹ = 28g
2008C		
20b	3+	Fe with valency 3 will give formula of Fe ₂ O ₃ via cross-over rule. Iron with valency of 3 will give iron ions with 3+ charge (Fe ³⁺)
200		

2009 <i>c</i> 10b	(Al ³⁺) ₂ (O ²⁻) ₃	$A ^{3+} O^{2-} (A ^{3+})_2 (O^{2-})_3$
^{2009C} 14b	35%	$1 \text{ mol NH}_4 \text{NO}_3 = (2 \times 14) + (4 \times 1) + (3 \times 16) = 28 + 4 + 48 = 80g$ %N = $\frac{\text{Weight of N}}{\text{Weight of NH}_4 \text{NO}_3} = \frac{28}{80} \times 100 = 35\%$
2009 <i>C</i> 16b	C ₆ H ₁₂ O ₆ ↓ 2C ₂ H₅OH + 2CO ₂	glucose <u>yeast</u> alcohol + carbon dioxide C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂
2009C 16d	5	$1 \text{ mol } C_2H_5OH = (2\times12) + (6\times1) + (1\times16) = 24 + 6 + 16 = 46g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{230g}{46g \text{ mol}^{-1}} = 5\text{mol}$
2009 <i>c</i> 19c	9	$1 \text{mol of } C_9H_{20} = (9\times12) + (20\times1) = 108 + 20 = 128g$ $\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{6.4g}{128g \text{ mol}^{-1}} = 0.05 \text{mol}$ $C_9H_{20} + 14O_2 \longrightarrow 9CO_2 + 10H_2O$ $1 \text{mol} \qquad 10 \text{mol}$ $0.05 \text{mol} \qquad 0.5 \text{mol}$ $1 \text{mol of } H_2O = (2\times1) + (1\times16) = 2 + 16 = 18g$ $\text{mass} = \text{no. of mol} \times \text{gfm} = 0.5 \text{mol} \times 18g \text{ mol}^{-1} = 9g$
2010C 12e	0.4g	1 mol Mg = 24.5g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{4.9g}{24.5g \text{ mol}^{-1}}$ = 0.2mol Mg + H ₂ SO ₄ \longrightarrow MgSO ₄ + H ₂ 1mol 1mol 0.2mol 0.2mol 1mol H ₂ = 2x1 = 2g mass = no. of mol x gfm = 0.2mol x 2g mol^{-1} = 0.4g
2010 <i>C</i> 13c	Ni ²⁺ CrO4 ²⁻	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaNi2+ CrO42- 2Ni2+ CrO42- 2Ni2+ CrO42- ANi2+ CrO42- A
2010 <i>C</i> 14b(i)	TiCl₄ + 4Na ↓ Ti + 4NaCl	TiCl₄ + 4Na → Ti + 4NaCl
2010C 16a(i)	2+	Sulphur is a group 6 non-metal element and forms S ²⁻ ions For PbS to be balanced in charge, lead ion must have charge Pb ²⁺
2010 <i>C</i> 16a (ii)	86.6%	1 mol PbS = (1×207) + (1×32) = 207 + 32 = 239g %Pb = $\frac{\text{mass of Pb}}{\text{mass of PbS}} = \frac{207}{239} \times 100 = 86.6\%$

		Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows and cancel down if necessary to get formula									
2011 <i>C</i> 16b(ii)	Al ₂ O ₃	$\begin{vmatrix} AI & O & AI & O \\ 3 & 2 & 3 & 2 \end{vmatrix} AI_2O_3$									
^{2011C} 17b	51g	$\begin{array}{l} 1 \text{mol } H_2\text{NCONH}_2 = (1\times12) + (2\times14) + (1\times16) + (4\times1) = 12 + 28 + 16 + 4 = 60g \\ \text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{90g}{60g \text{ mol}^{-1}} = 1.5 \text{mol} \\ H_2\text{NCONH}_2 + H_2O \longrightarrow CO_2 + 2\text{NH}_3 \\ 1 \text{mol} & 2 \text{mol} \\ 1.5 \text{mol} & 3 \text{mol} \\ 1 \text{mol} & 3 \text{mol} \\ 1 \text{mol} \text{NH}_3 = (1\times14) + (3\times1) = 14 + 3 = 17g \\ \text{mass} = \text{no. of mol} \times \text{gfm} = 3 \text{mol} \times 17g \text{ mol}^{-1} = 51g \end{array}$									
^{2011C} 18c	Co ²⁺ or 2+	Chlorine is a non-metal in group 7, with a valency of 1 and forms the Cl ⁻ ion. CoCl ₂ has two Cl ⁻ ions \therefore Cobalt ion must be 2+ to balance charge \therefore Co ²⁺ ion									
2011 <i>C</i> 20a(i)	Pb(NO3)2 + 2NaI ↓ PbI2 + 2NaNO3	Pb(NO3)2 + 2NaI → PbI2 + 2NaNO3									
2011 <i>C</i> 20c(ii)	0.002	no. of moles = volume × concentration = 0.02litres × 0.1 mol l ⁻¹ = 0.002 mol									
2012C 15a	2KOH + H₂SO₄ ↓ K₂SO4 + 2H₂O	$2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O$									
^{2012C} 15c	44.8%	gfm K ₂ SO ₄ = (2x39) + (1x32) + (4x16) = 78+32+64 = 174g % K = $\frac{\text{mass K}}{\text{gfm}}$ = $\frac{78}{174}$ x100 = 44.8%									
²⁰¹² <i>C</i> 15d	(NH₄⁺)₃PO₄³-	Formula of ammonium phosphate is (NH4)3PO4 Ammonium ions have a formula of NH4 ⁺ and phosphate ions PO4 ³⁻									
^{2012C} 17b	0.005mol	n o. of moles = v olume x c oncentration = 0.05litres x 0.1mol l ⁻¹ = 0.005mol									
2012 <i>C</i> 21c(i)	25	Mass Al = 10% of 250g = $\frac{10}{100}$ ×250g = 25g									
2012 <i>C</i> 21c (ii)	0.926	n o. of mol = $\frac{mass}{gfm}$ = $\frac{25g}{27g}$ = 0.926mol									
2013 <i>C</i> 11a (i)	Sodium phosphate	Metal comes first in the nameNon-metal comes second in the name3rd element is oxygen = -atesodiumphosphate									
2013 <i>C</i> 16b (i)	86.2%	gfm HgS = (1×200.5) + (1×32) = 200.5 + 32 = 232.5g %Hg = $\frac{\text{mass of Hg}}{\text{total mass}}$ × 100 = $\frac{200.5}{232.5}$ × 100 = 86.2%									

2013 <i>C</i> 16b (ii)	Hg²⁺	 Hg (mercury) is a transition metal and does not have a set valency to work out the charge on the metal ion. The sulphide ion has a negative charge as it is a non-metal ion The sulphide ion has a two negative charge as sulphur is in group 6 and has a valency of 2 ∴ S²⁻ ion The mercury ion must have a positive charge as it is a metal ion The mercury ion has a two positive charge to balance the two negative charge of the S²⁻ion ∴ Hg²⁺
^{2013C} 17c	35.5g	$1 \text{mol } N_2 = 2 \times 14 = 28g$ $\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{7g}{28g \text{ mol}^{-1}} = 0.25 \text{mol}$ $N_2 + 3F_2 \longrightarrow 2NF_3$ $1 \text{mol} \qquad 2 \text{mol}$ $0.25 \text{mol} \qquad 0.5 \text{mol}$ $1 \text{mol } NF_3 = (1 \times 14) + (3 \times 19) = 14 + 57 = 71g$ $\text{mass} = \text{no. of mol} \times \text{gfm} = 0.5 \text{mol} \times 71g \text{ mol}^{-1} = 35.5g$
2013 <i>C</i> 18b(i)	0.001	n o. of moles = v olume × c oncentration = 0.02litres × 0.05 mol l ⁻¹ = 0.001 mol
2013 <i>C</i> 18b(ii)	0.04	concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.001 \text{ mol}}{0.025 \text{ litres}}$ = 0.04 mol l ⁻¹

Na	115			Pas	st Po	aper	Qu	estic	on B	ank				ABC	vright	
Traffic	: Lights			Unit	1.3	a Cl	hemi	i cal	Forn	nulae	2		J	AIS (che	m
Outcome	2000 General		2002 General	2003 General		<u>2005</u>	<u>2006</u>	<u>2007</u> <u>General</u>	<u>2008</u>	2009 General			2012 General	2013 General		
37	General	General	General	General	14a	10c	13a	General	10c	General	13a	General	General	General		
38				12b				14c(ii)		10b(i)			16c(ii)	19a		
39																
40							16b		15b(i)							
41																
42																
43						16b										
44 45																
46																
47																
48a																
48b																
48c																
49					14b						18a			10c(i)		
50																
51																
52																

SG General	Answer				Reas	soning			
		The tw	o most co	mmon ele		2	t are silic	on and oxyge	n:
20020			Write Elements c valency	and their	Write Dowr of Cross Ov		ollow arrows down to ge	s and cancel t formula	
2003 <i>G</i>	SiO ₂		Si	0	Si	0			
12b			•	•			c :/	\mathbf{n}	
				-			Si	J_2	
			4	2	4	2			
2004 <i>G</i>		Endin	-	Meanin			Exam		
14a	magnesium, sulphur &	-ide -ate		ts in compo ts in compo	und und + oxygen	copper sulphi		r + sulphur r + sulphur + oxyg	oen
140	oxygen	-ite						1 + sulphur + oxyg	-
2004 <i>G</i>			solution			nen a solute (dissolves i	n a solvent	
14b	solvent	_	solute solvent		tance that i	<u>s dissolved</u> the dissolvin	0		
2005 <i>G</i>	a a la inna i a alima		-ide			ns the two nar	3	ts	
	calcium, iodine		-ate C	ompound co	ntains 3 elem	ents (two nam	ed element	s + oxygen)	
10c	and oxygen		-ite C	ompound co	ontains 3 elem	ents (two nam			_
2005G		Write down Valency below each element's symbol						down to get	
16b	BaCO ₃		Ba (CO ₃ ²⁻	Ba	<i>CO</i> ₃ ²⁻			
			2	2	2*	Χ_2	B	aCO ₃	
2006 <i>G</i>	land uiteraan	Endin	-	Meanin	-		Exam		
	lead, nitrogen	-ide -ate		s in compou	und und + oxygen	Copper sulphi		r + sulphur r + sulphur + oxyd	oen
13a	and oxygen	-ite						n + sulphur + oxyg	-
2006 <i>G</i>		Prefi		10N0-	di-	t	ri-	tetra-	
16b	NO ₂	Meani Examp		1 monoxide	2 carbon dio:	kide sulphur	3 trioxide	4 carbon tetrachlor	ride
			rite down V			Cross-over		v arrows to	'
			each elemer			rrows	get	formula	
2007 <i>G</i>			A	0		0			
14c(ii)	AI_2O_3			•		\checkmark			
					¥			$1_{2}O_{3}$	
			3	2	3	2			
2008 <i>G</i>	alumiunium +					named eleme			
10c	silicon + oxygen					ents (two name ents (two name			
2008 <i>G</i>				•					
15b(i)	CO ₂			Prefix Neaning	Mono- 1	Di- Tri- 2 3	- Teti 4		
	1	1							

				te down Valency below ch element's symbol		Put in Cross-over Arrows		Follow arrows to get formule		
2009 <i>G</i>	MgCl₂		Mg	Cl		Mg Cl				
10b(i)	mgeiz					\mathbf{X}		MgCl ₂	2	
			2	1		2 1				
2010G	Datazzium combon and	Ending		Meaning			Examp			
	Potassium, carbon and	-ide		in compound		Copper sulphide		•		
13a	oxygen	-ate -ite		-				+ sulphur + oxyge + sulphur + oxyge		
2010G			solution	•	13	vhen a solute d				
	Solvent		solute			t is dissolved				
18a			solvent The liquid that does the dissolving							
			Write down Valency below		Put in	Cross-over	Follo	Follow arrows to		
			each elemen	t's symbol	,	Arrows	get formula			
2012 <i>G</i>	Li ₂ O		Li	0	Li	0				
16c(ii)	LIZO					\bigvee		: 0		
			1 2		1	1 . 22		_i ₂ 0		
			1	2	1	6				
2013G	1.	_		the substand						
10c(i)	solute	-				the dissolving hen a solute d	issolves i	n a solvent		
		L					1		7	
			rite down Vo each elemen			Cross-over Arrows		w arrows to t formula		
2013G							ge			
19a	AII3		Al	Ι	A					
190						\times		AII ₃		
			3	1	3	▲ ▲1				